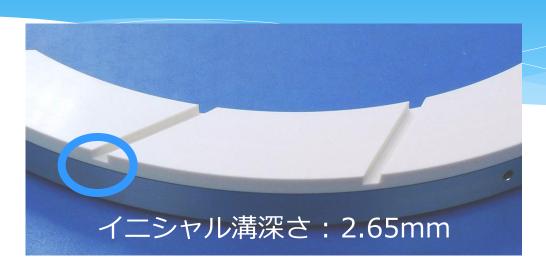


CMP装置で慢性的に問題となっている リテーナーリングの寿命を 改善した具体例

【お問合せ先】


株式会社 協同インターナショナル

http://www.kyodo-inc.co.jp/

〒216-0033 神奈川県川崎市宮前区宮崎2-10-9 TEL:044-852-7575 FAX:044-854-1979

email:denshi@kyodo-inc.co.jp

リテーナーリングの材質を変更する事で、 6~7倍の耐久性に。

PPSと新材料のリテーナーリングを15時間連続CMP研磨した後の残溝深さ:

<PPS> 約2.25mm(消耗量0.4mm)

<新材料> 約2.55mm(消耗量0.1mm)

* 200mm用CMP装置によるTEOS系酸化膜の研磨

単純比較で新材料はPPSの4倍の耐久性を持つとの判定結果。 その後の3ケ月の連続ランで6~7倍の耐久性となりました。

その結果、トータルランニングコストを 1/3~1/4まで削減。

コスト削減(例) 200mm酸化膜CMP用リング(2ピースタイプ) の場合

PPSリング

@25,000×100枚/月=¥2,500,000/月

新材料リング @50,000× 30枚/月=¥1,500,000/月

歩留り改善などの効果も見込めます

CMP装置用リテーナーリング用に 開発された樹脂系新材料 "X3G"

Aluminum
Barium
Calcium
Chromium
Copper
Iron
Lead
Lithium
Magnesium
Nickel
Potassium
Sodium
Strontium
Titanium

Ketron	Techtron					
PEEK	PPS	ETX	X3G	Vespel	SCP-5000	CTR
0.30	0.13	53.00	3.30	0.05	0.078	0.15
0.05	0.00	140.00	0.18	0.001	0.0038	0.12
7.90	0.14	5.00	2.20	0.629	0.79	0.1
0.48	0.03	0.07	0.50	0.128	0.039	0.56
0.17	0.06	0.85	0.04	0.012	0.536	0.15
5.60	0.25	8.20	8.50	0.524	0.774	6.5
0.04	<.005	0.00	0.01	0.0001	0.019	0
<.005	<.005	0.00	0.00	0.003	0.002	0
0.95	0.08	150.00	110.00	0.112	0.492	1.1
0.33	0.03	0.24	0.57	0.026	0.18	0.22
1.50	0.30	12.00	0.24	0.011	0.076	2.3
21.00	460	2.20	0.95	0.41	2.72	18
0.55	<.002	2.00	0.01	0.0018	0.0063	0.55
0.12	0.40	3,200.00	0.52	0.0062	0.019	0.32
0.11	<.002	5.20	0.04	0.101	0.674	0.29

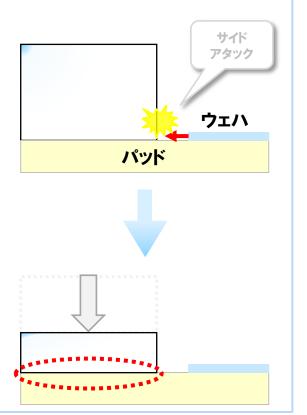
X3Gの特徴

1長寿命

- ✓ PPSの3~5倍の寿命特性 *PPS: 現在リテーナーリング用の材料として最も普及している樹脂材
- ✓ 従来の長寿命樹脂の問題 = サイドアタック

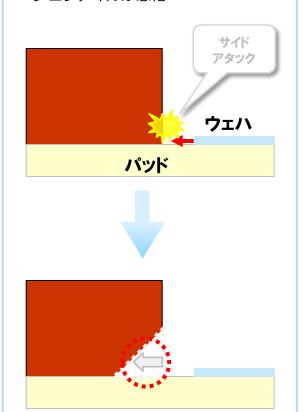
*サイドアタック:ウェハによる樹脂内側の打痕

✓ X3Gは、このサイドアタックを解決することで長寿命化を実現

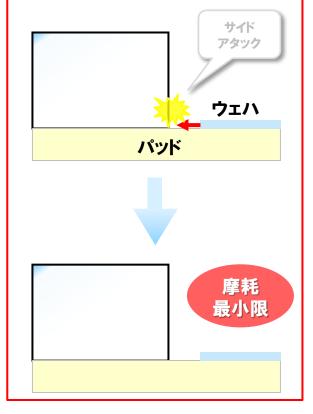

②面内分布の改善

- ✓ より平坦な面内分布を実現
- ✓ 結果として、ウェハ1枚辺りの外周部分からのチップの取れ数を増やし、 歩留り改善に貢献

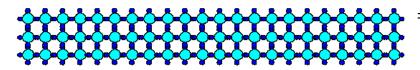
X3Gのサイドアタックに対する利点


PPS

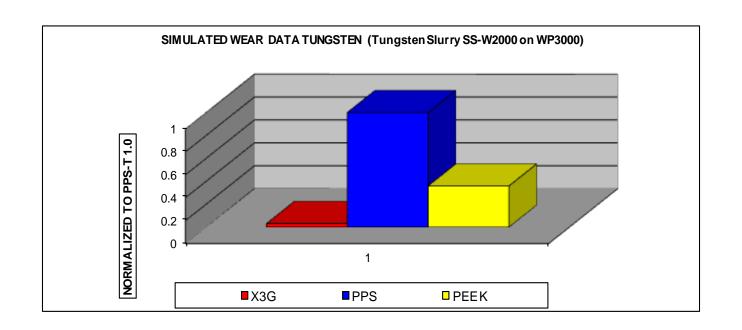
- ウェハの研摩と比例してPPSも摩耗
- その結果、常に90°の内壁が確保でき、安定したCMPを実現
- デメリット=樹脂の摩耗が早い


従来の長寿命樹脂

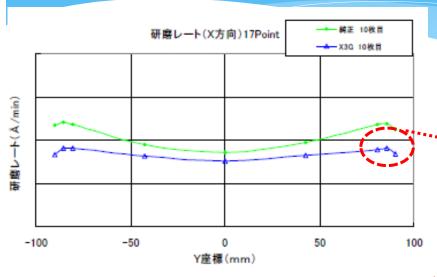
- ウェハの研摩に対して樹脂が消耗しない
- その反面、継続的にウェハが衝突した リング内壁に打痕が発生し、面内 プロファイルが悪化

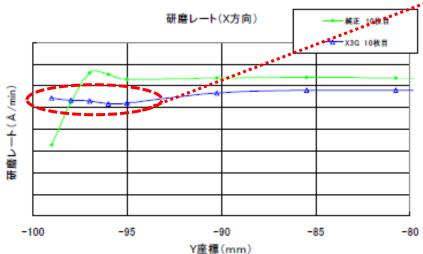

X3G

• ウェハの研摩に対して樹脂が消耗 せず、更にウェハのサイドからの 衝突にも強いため、結果的に樹脂 の消耗を最小限に食い止めながら、 安定したCMPを実現



X3Gがサイドアタックを軽減できる理由





もともと摩擦係数の小さいエンジニアリングプラスチックに SPM Technology社が独自開発した特殊な2次加工処理 を施すことで、より強固な樹脂特性を作り出します

面内分布の改善

外周部の分布が変わったため、 CMP後のフォトリソ工程における ディフォーカス問題が改善。 その結果、チップの取れ数の歩留りも改善。 (ウェハ全体で1%改善、外周部で20%改善)

* データ: 200mm用CMP装置(TEOS系酸化膜の研磨)

現在このお客様では、酸化膜工程の7割を X3Gに切り替えて頂いております